Client / Server Distribution in a
Structure-Oriented Database Management
System

Roland Baumann
Department of Computer Science ITI
Aachen University of Technology, Germany

roland@i3.informatik.rwth-aachen.de

Abstract

Client / Server distribution in (software) design environments can
be achieved by distributing an underlying repository database man-
agement system. Several alternative approaches for such a distri-
bution exist, which differ in the layer of the architecture at which
client / server communication takes place. We discuss two approaches

query-server and page-server we have studied in the context of
the graph database management system GRAS which is used in the
IPSEN project. We focus this discussion on the impact the two ap-
proaches have on DBMS architecture and functionality as well as on
performance with respect to the communication overhead induced by
them. The work which has been done to evaluate and implement these
approaches in GRAS is presented and problems of both alternatives
and the solution we have found are outlined.

1 Introduction

Software systems for application areas like CAD or software engineering han-
dle complex data structures to model the design objects they deal with. To
effectively support the work of a design team, these software systems have
to store the design documents persistently [2, 10]. For this purpose they
often use database management systems as repositories. In contrast to more

www.manaraa.com

traditional applications, e.g. of business administration where data has a
rather flat structure and relational database management systems are very
well suited, design applications model structurally rich data. Hence, it seems
natural for such applications to use a DBMS with a data model that al-
lows to handle highly structured data in a straightforward manner. Such
DBMSs are called structure-oriented DBMSs. Object-oriented DBMSs [1]
are an example of structure-oriented DBMSs.

In general, more than one developer works on a project. So the project
database has to be available at the same time to different people working at
different workstations. While this is uncritical as long as only one designer
at a time accesses a document stored in the repository, it becomes a problem
if this restrictive policy cannot be ensured. As an example, consider the
case where project administration information is also maintained with the
help of the underlying DBMS. Developers have to be able to access the
administration information concurrently. So a design environment has to
deal with concurrency and distribution. Choosing the underlying DBMS
as the part of the environment to tackle these problems is a very natural
and successful approach. It leads to a logically still centralized view of the
repository and at the same time eases enforcement of data consistency and
makes the design data highly available.

But even if distribution and concurrency control of a design environment
should be handled by its repository DBMS, several alternatives remain how
this can be realized. We investigate two of these alternatives in this paper,
namely distribution with a query-server and with a page-server DBMS. We
study them using the DBMS GRAS as an example system. GRAS was build
to efficiently store design documents in form of directed, attributed graphs.

To be able to evaluate different client /server architectures, several as-
pects must be taken into account. First of all, the distribution scenario,
i.e. the way the system is used by multiple users and tools, must be made
clear. This highlights the requirements imposed on the system regarding
concurrency control and transaction support. Next, the introduction of an
inter-process communication layer also influences the complexity of the over-
all system and can even affect the functionality of other parts of the DBMS.
Last but not least, communication costs of the distribution cut should be as
low as possible, because inter-process communication is still a highly time
consuming factor. Communication costs of a client /server distribution de-
pend on the number and size of the messages sent between client and server.
We have studied all three aspects of client /server distribution mentioned

www.manaraa.com

above for the query-server and the page-server implementation of GRAS and
present our results in this paper.

1.1 Related Work

Research on client / server distribution and performance aspects in database
management systems for engineering environments was already described by
several authors from the software engineering as well as the database com-
munity. The work presented in this paper differs in several respects from
previously published work. DeWitt et al. [9] study object-server, page-server,
and file-server architectures for object-oriented database systems. They per-
form their measurements using a benchmark especially developed for this
task. This benchmark runs on three prototype systems based on the WiSS
[7] which were implemented as test beds for the measurements. In this pa-
per, we study the communication profile of existing applications using the
DBMS GRAS, which is the normal DBMS for these applications. In this
way, we hope to measure the exact access profiles our tools impose on the
database. Like [9], we focus only on the client /server architectures of the
systems, while keeping the rest of the DBMS constant.

This is in contrast to the work of Chu [8], who considered four different
commercial DBMSs to evaluate their use for electronic CAD applications,
including relational and object-oriented DBMSs. The experiments were per-
formed with the VLSI layout editing system Magic. To ease the integration
of Magic with the different DBMSs, only load /store operations of layout
cells were implemented and measured, so that access to data was coarse-
grained from the DBMS point of view. Chu also discusses object-server and
page-server architectures for object-oriented DBMSs and the impact of fine-
grained locking in a page-server system. In contrast, the tools we use in
our experiments access their persistent data in a fine-grained fashion. Also,
we are not concerned with the locking granularity of our page-server, here.
Rather, we focus on the impact query-server and page-server architectures
have on functional aspects of GRAS and their communication costs.

From an application point of view, the work of Emmerich [11], is the one
most closely related to ours. He also investigates fine-grained access to data in
software engineering environments. To evaluate the performance of different
DBMSs, including relational and object-oriented systems as well as an early
version of GRAS without client /server architecture, he uses a sophisticated
benchmark which closely resembles the access profile of tools in an integrated

www.manaraa.com

software engineering environments. The work is concerned with the overall
performance of the systems, however, and does not specifically study the
impact of client / server distribution.

1.2 Structure of the Paper

The rest of this paper is structured as follows. In section 2 we introduce the
software engineering environment IPSEN and its underlying DBMS GRAS.
This provides a basic understanding of our approach to fine-grained integra-
tion and shows how IPSEN tools access their data. We will also discuss the
requirements on client /server distribution in an overall integrated IPSEN
environment. Following this, in section 3 we discuss the query-server im-
plementation of GRAS as a first solution to distribute the functionality of
the system. We outline the advantages and disadvantages of this approach
regarding the GRAS functionality and also present our experimental mea-
surements of the (expected) communication profile of IPSEN tools for query-
and page-server implementation. Then section 4 gives an overview of how the
page-server distribution of GRAS is designed and implemented and again,
what impact this has on the functionality of the system. We conclude the
paper with a summary in section 5.

2 IPSEN and GRAS

The incremental, interactive, and integrated project support environment IP-
SEN [23] was developed in several research prototypes at the Department of
Computer Science I at the Aachen University of Technology. The goal of the
IPSEN research activities is to develop languages, methodologies, and tools
for efficient and flexible software engineering environments. The project uses
an a priori approach to data integration, so that all tools rely on a common
data model for their documents. To allow for fine-grained relations between
and within documents, all IPSEN documents are stored as graphs, most often
as abstract syntax graphs. Abstract syntax graphs are based on abstract
syntax trees, representing the context-free structure of a document. Nodes in
this tree are called increments, and each increment represents a non-terminal
symbol of the grammar defining the document structure. The syntax tree is
augmented with context-sensitive and semantical edges between increments,
so that we end up with a directed, node and edge labeled graph.

www.manaraa.com

All TPSEN tools mark one increment of an abstract syntax graph as the
current increment. They navigate through a document by moving a cur-
sor from the current increment to another increment which in turn becomes
the current increment. Changes are always performed on the current incre-
ment. A change can affect the increment itself or the whole subtree below it,
modifying the structure of the graph.

To ease development of new tools, the IPSEN approach postulates the
use of a framework for its tools. The tool functionality is specified with
graph rewriting rules. This can be done with PROGRES (PROgramming
with GRAph REwriting Systems), a language and environment to edit and
execute graph grammar specifications [26, 30]. Code in Modula-2 / Modula-
3 or C can be generated from these specifications and embedded into the
IPSEN framework. To measure the impact on communication costs the two
studied client / server approaches have, we used the PROGRES environment
(which itself is built using the IPSEN framework) and prototypes built from
generated code of PROGRES specifications as example applications.

All IPSEN tools use the structure-oriented DBMS GRAS as their repos-
itory. GRAS (for GRAph Storage) [18] was especially designed to meet the
requirements of IPSEN for a repository which is able to store complex fine-
grained data. According to IPSEN’s view of documents as abstract syntax
graphs, GRAS’ data model is the directed, attributed graph with typed nodes
and edges. Since the two client /server implementations we present in this
paper use different versions of the core GRAS system, we will briefly review
the history of GRAS next.

Development of GRAS started several years ago [4]. The system was de-
signed as a program library enabling every application that was linked with
this library to store its data as persistent graphs. The first step towards a
client / server architecture was done in [29] by implementing an RPC inter-
face on top of the library. Experiences with this first distribution identified
significant problems regarding both, functionality and performance (cf. sec-
tion 3). This lead to many improvements which were mainly contributed
by [25]. The improved query-server system is currently used by most of the
tools of the IPSEN project. We will refer to this version of GRAS as GRAS2
in the following.

At the time of the first attempt to distribute GRAS as a client / server
system, a different project was launched aiming to reimplement GRAS com-
pletely in the object-oriented programming language Modula-3. The main
concern of this project is to clean up the code and at the same time test new

www.manaraa.com

features without interfering too much with the IPSEN tools still in use. The
page-server we describe in section 4 is realized in the new GRAS system,
which we will refer to as GRAS3. This page-server variant of GRAS is al-
ready used by two IPSEN-like tools. The first is an analysis and development
tool which stores software design documents like architecture and interaction
diagrams as graphs [19, 21]. The second, currently being developed, aims at
a fine-grained reader-writer environment for electronic books [22, 13].

The next sub-sections will give details on the requirements of a client / ser-
ver architecture for GRAS. After outlining the multi-user scenario we have
in mind in 2.1, we will present the basics of GRAS’ functionality and archi-
tecture in 2.2 and 2.3, respectively.

2.1 Client / Server Scenario

As mentioned in the previous section, we need to clarify the client /server
scenario for IPSEN tools before we can evaluate the two approaches to dis-
tribution in GRAS. We do this here by highlighting the differences between
client / server systems for business administration on the one side and an
integrated design environment like IPSEN on the other.

Like many other aspects of database system support for the two applica-
tion domains, the client / server scenarios aimed at by them are very different,
too. First of all, design teams work in a network of powerful workstations
with no clear dominating server machine. This is in contrast to the still main-
frame oriented style of client / server distribution for business administration
systems. This makes it possible to burden the client machines with more
tasks otherwise performed by the mainframe, since the sum of the computa-
tional power of all client machines surpasses the power of a single workstation
server.

Furthermore, the access of client applications to the database in design en-
vironments is quite different from that in business administration, too. Usu-
ally, designers will work on their documents within their private workspaces
for quite a long time before sharing a first version with other designers. And
even then, this sharing rather means shared reading without interference of
a writer, because further development of the document will result in a new
version being created. In this way other developers are still able to work with
the previous released version without direct interference of a writer. Shared
access to documents will only be granted to a limited number of clients, say
the members of a design team. This is in contrast to, e.g. banking appli-

www.manaraa.com

cations, with potentially hundreds of clients each potentially accessing the
same database concurrently for money transfers.

On the other hand, there are hot spots in design environments, too.
Project administration is one example. In an overall integrated design envi-
ronment, tools of each project member need to access the status information
of the project to derive the agenda of the project member and to report
about the status of ongoing work, so that the agendas of other team mem-
bers can be updated (e.g. implementation of a module can only start when
its interface is fixed).

To conclude, in the scenario we are aiming at, the common case is a
single user with a private workspace reading data from a shared repository.
When data is shared, there should be few conflicts due to concurrent writes.
An exception is project administration, where we have a higher potential for
data contention but also shorter access times for the typical operations on
this data.

2.2 Functionality of GRAS

The programming interface of GRAS allows to create and delete nodes, create
and delete edges, initialize and modify attributes of nodes in form of byte
arrays of arbitrary length, and to maintain indexes on attributes. A node in
a GRAS graph can be characterized as a pair (node id, node type), an edge as
triple (source node id, edge type, sink node id), and an attribute as (node id,
attribute name, attribute value). GRAS supports almost all kinds of queries
on these tuples, e.g. we could query for all outgoing edges of a node (source
node id, ¢, ?)." Queries can have single values, sets, or relations as results,
e.g. the previous query delivers a relation of pairs (edge type, sink node id).

Beside these basic operations, GRAS offers a mechanism for automatic
attribute evaluation via callbacks to a client program. Consider as an ex-
ample a list of nodes linked with edges of type 'mext’ as shown in fig. 1.
Each node has an attribute ’pos’ giving the position of the node in the
list. The value pos of this attribute for a node n can be computed as
pos(n) = pos(n. <= next—) + 1 | 1, which should be read as ’the position
of node n is either one higher than the position of its predecessor (incoming
edge 'next’) or one, if there is no predecessor of n and hence n is the head of

'Not supported are queries of the form (%, edge type, ?), (%, attribute name, ?), and
(?, 2, attribute value), as well as queries leaving all components unspecified.

www.manaraa.com

the list’. This would be implemented by first declaring a static dependency
relationship between the position attribute of a node in the list and the po-
sition attribute of the node connected to it with an incoming 'next’ edge on
type level. This static dependency tells GRAS when to mark dependent at-
tributes as invalid. We could, e.g., insert a new node in the middle of the list
of fig. 1 in which case all position attributes of the nodes to the right of the
new node needed recomputation and would be marked invalid by GRAS. To

pos=1 pos=2 pos=3 pos=4
List next List next List next List
Node Node Node Node

Figure 1: Linked list with position attributes.

enable GRAS to automatically re-evaluate invalid attributes, the application
program then has to install a callback procedure which will be called every
time GRAS tries to read an invalid position attribute. Note that this might
result in a recursion in our case, because to compute a position attribute,
the callback-procedure has to read the position attribute of the predecessor
node, and this as well can be invalid, so that GRAS starts another callback.?

Callbacks are also employed by another feature of GRAS. A client can ac-
tivate a demon that will notify it via callbacks when a specified event occurs.
Such events can be all graph changing commands, but also undo-redo (cf.
sub-section 2.3), and transaction-start /end. This gives GRAS some active
behavior using an event-trigger-action mechanism like the one described in
[20].

2.3 Undistributed Architecture of GRAS

Though the implementations of GRAS2 and GRAS3 differ in many respects,
the coarse architecture of the core systems is the same for both. GRAS has
a layered architecture as shown in fig. 2. The sub-systems have the following
functionality:

PageStorage resides directly above the network-file-system. It provides a
view on files as a sequence of memory pages. Pages are cached internally
so that accesses to disk are reduced.

2Cycles in the evaluation process are detected and lead to an error message.

www.manaraa.com

‘ SchemeAndA ttributeM anagement }—*
l Event
Trigger
‘ ChangeM anagement }—’ Action
l Machine
‘ GraphStorage }

NodeStorage ‘ ‘ EdgeStorage ‘ ‘AttributeStorage‘ IndexStorage

l

‘ Virtual RecordStorage ‘

l

‘ PageStorage ‘

Figure 2: The architecture of GRAS without client /server distribution.

VirtualRecordStorage installs an efficient access structure on page-files.
Pages store sequences of database records. GRAS uses dynamic hashing
to compute the page a record is stored on and static hashing for the
record location on a page.

EventTrigger ActionMachine provides active behavior to the higher lay-
ers of GRAS and the GRAS clients. It uses callbacks to inform clients
about occurring events. Events are detected by the three layers dis-
cussed next.

GraphStorage is the first layer of the GRAS architecture implementing an
abstract data type for graphs. This layer already provides navigational
access to a directed graph. Attributes are untyped, i.e. byte-arrays.
It also detects events like creation / deletion of a node and notifies the
event-trigger-action-machine about them.

ChangeManagement handles recovery situations of all kinds. It provides
linear undo / redo, nested transactions, and crash recovery. It also sup-
ports versioning, but does not implement a fixed versioning concept.

SchemeAndAttributeManagement adds a type concept to the abstract
graph data type. Nodes are instances of node types / classes and node
types form an inheritance hierarchy. Node types define typed attributes

www.manaraa.com

for their instances. Attributes can be meta (class wide), intrinsic (in-
stance), or derived (value depends on other attributes of the same or
other nodes). Edge types determine the classes of source and target
nodes of edges. Edge types also define source and target cardinalities
to restrict the number of incoming or outgoing edges of the respective
type at a node.

For the following discussion on distribution aspects, it is important to
know that GRAS stores different parts of a graph in different storages. As can
be seen in fig. 2 the sub-system GraphStorage contains the four sub-systems
NodeStorage, EdgeStorage, AttributeStorage, and IndexStorage. These sub-
systems implement persistence for nodes, edges, long attributes, and indexed
attributes, respectively. This design allows to keep the structural information
of a graph (nodes and edges) together on relatively few pages, while unstruc-
tured data are stored separately. The goal of this separation is to speed up
navigation, because in this way many more nodes and edges fit on one page
than would if attributes, nodes and edges were stored together on the same
storage pages. On the other hand, if attributes have to be read, the design
is not a drawback, because the total amount of space for node and attribute
information is almost the same, regardless whether they are separated or not,
so that performance is mainly restricted by main-memory and cache size. To
make sure navigation is efficient, GRAS tries to cluster neighboring nodes on
the same page. Whether or not two nodes should be treated as neighbors can
be determined by the application. This separation of structural information
from unstructured contents distinguishes GRAS from most object-oriented
DBMS, which usually store all information of an object in one continuous
block of memory.

3 Distribution

The first thing to do when implementing a client / server architecture for a
DBMS, is to select the architecture layer on which inter-process communi-
cation should take place. In [9], three alternatives are investigated: object-
server, page-server, and file-server. These are all data-shipping approaches:
they all ship data maintained by the server to the clients, so that these can
work on it for some time autonomously. An additional alternative that we
have studied is a query-server. This kind of server does not ship data but
modifies it according to client-requests and answers client-queries. Query in

10

www.manaraa.com

our context means a navigational access to the graph databases, just like the
programming interface of GRAS offers.

Though query-server architectures have been blamed to be unsuitable for
navigational access to data ([9], [8], [11]), they do have their advantages.
First of all, we have to note that the criticism mainly concerns query-servers
with a high level query language such as SQL which does not support the
required traversals well, so that many joins might be necessary to compute
a result. This is different from our approach, because the queries offered by
the GRAS server are the same as for the undistributed system. Moreover, we
think an architecture like the one proposed for GRAS?2 is a natural choice for
distribution in heterogeneous environments. Because only the server needs
to access the physical representation of data on storage pages, the clients
may well operate on completely different operating systems and platforms.
What is required though, is a machine independent representation of data
sent as parameters and results to queries. This however is offered by most
RPC system, e.g. the XDR encoding for the Sun RPC system [27]. The same
arguments make the query-server the favorite candidate for use in a CORBA
[14] environment.

The Triton object manager, which is used as repository in the Arcadia
project [17] is another example for a query-server system. In [15], access-
ing the server from applications written in different programming languages
serves as a main argument for the query-server architecture. This basically
supports our argument for favoring query-servers in heterogeneous environ-
ments.

In the following sub-sections we will introduce the query-server imple-
mentation of GRAS (GRAS2) and discuss its advantages and disadvantages
regarding the functionality and architecture of the system. We will then re-
view the other alternatives for client /server distribution (object-server and
file-server) and argue why we think they are infeasible for GRAS. Finally, sub-
section 3.3 presents the experiments we conducted to evaluate the commu-
nication costs query-server and page-server architectures impose on GRAS.

3.1 Query-Server Realization of GRAS

The architecture of the GRAS query-server implementation differs only in the
top-level layer from its undistributed counterpart. As the new top-most layer,
we added an RPC interface to the system, so that any calls from a database
client to the server are realized by remote procedure calls. This architecture,

11

www.manaraa.com

which was also presented in [18], is shown in figure 3 in a compact form.

ClientServerDistribution
Event
SchemeAndAttributeManagement | Trigger
Action
ChangeM anagement Machine
GraphStorage

Virtual RecordStorage

PageStorage

Figure 3: GRAS architecture with query-server distribution.

With this distribution style, all data is still accessed and changed in
a centralized fashion, because all data is maintained by the server process
exclusively. Clients can read and modify graphs by sending corresponding
requests to the server process. Here, these requests are exactly the same
interface calls as in the undistributed case. This centralization simplifies
integrity maintenance and concurrency control to a great extent when many
clients work on the same data, because only the server process performs data
accesses.

On the other hand, when many clients concurrently access data, the server
needs to answer many requests at once. This imposes a heavy load on the
server process, because it has to perform all database functionality for all its
clients. Figure 4 shows a simple scenario with only one server and two client
applications accessing it. In general, GRAS2 support a multi-client / multi-
server scenario, so that not one single server maintains all data. Still, server
performance may severely limit the performance and scalability of the overall
system with this kind of distribution.

A quite different problem arises due to the special interface of GRAS. As
mentioned in section 2, GRAS uses callbacks to evaluate derived attributes
and also for its event-trigger mechanism. These callbacks access code in the
client application and hence have to be converted into remote procedure calls
in this architecture. This has two consequences:

1. Client processes must in principle always be ready to receive callbacks
from the server, even during time intervals when they are not involved
in communication with the server.

12

www.manaraa.com

‘ Application 1 ‘ Application 2

‘ ClientSideCommlinterface ‘ ClientSideComminterface
X 14
ServerSideComminterface
Event
SchemeAndAttributeManagement | Trigger
Action
ChangeM anagement Machine
GraphStorage

Virtual RecordStorage

PageStorage

Figure 4: Simple scenario with one query-server and two clients.

2. When evaluating derived attributes, the common case is to use values of
other attributes to compute the new value (see the example of the 'pos’
attribute above). Hence, the client which computes the new derived
value has to query the server for the values of other, defining, attributes.
If these defining attributes are also derived, their value in turn might
need recomputation, which leads to a callback to the client and so on.
This means, queries from client to server and callbacks from server to
client can be nested, as depicted in figure 5.

These two problems inhibit the use of one of the classical RPC mecha-
nisms, which commonly do not support callbacks. Therefore [25] introduced
a new communication infrastructure that is capable to manage such nested
callbacks and also enables clients to respond to server requests when neces-
sary.

Triton [15] has to deal with similar problems. In contrast to GRAS, Triton
stores C++ objects as entities. And whereas the code for attribute evaluation
in GRAS is executed by the client processes, the code for invocated methods
in Triton is executed by the Triton server. While this supports the use
of Triton in heterogeneous environments, it also has severe disadvantages.
First of all, it further increases the load on the server machine, lowering
the overall performance. Second, the code does not belong to the database
management system but to the application using the DBMS. Hence, it might
not be as reliable as the code for the server. In case of a programming error,

13

www.manaraa.com

Client Server

Get

attribute’ pog' from node n

Compute atribute’pos’ for node n

G

€t attribute 'pos’ from node ry

Compute attribute "pos for noden

os for noden”

Compute attribute P

Figure 5: Call stacks of a client and a server process with nested callbacks.

however, the server process might crash and in this way not only the client
invoking the faulty method but all clients accessing the server would suffer
damage, maybe even data loss. A solution to this problem would be to use an
interpreted language. The code could then either be executed in a controlling
environment at the server side or shipped to the client for execution.

The problem of asynchronous callbacks due to action execution of the
event trigger machine, however, seems to be unavoidable. As long as active
rules are only used to enforce or check consistency constraints, the solutions
outlined in the previous paragraph were also applicable. But in integrated
environments like IPSEN, tools use this mechanism also to synchronize them-
selves with other tools. Therefore, a communication mechanism that is able
to deal with this kind of callbacks is necessary anyway, even, as we will see
later, in the page-server system.

Besides the fact, that a query-server may well become a performance bot-
tle neck due to the many client-requests it has to answer, the query-server
solution also lacks performance because of the huge number of remote pro-
cedure calls between client and server (consider e.g. the number of RPCs
necessary to perform a complete traversal of an abstract syntax tree). Since
RPCs involve inter-process communication, they are several orders of mag-
nitude slower than local procedure calls. Table 1 lists the times necessary for

14

www.manaraa.com

transferring data of varying size between processes with remote procedure
calls.

Size in bytes Execution time in ms
1 7.8

10 7.9

100 8.2

1000 9.7

4000 17.9

8000 28.4

Table 1: Communication costs for data chunks of varying sizes (taken from
[9]). Times were gathered between two Sun 3 /80 processors running the Sun
RPC software and Version 4.03 of the SunOS.

To circumvent this problem, [25] offers an elegant solution: client and
server can be linked together into one operating system process while still
transparently using the same communication interface. 'Remote’ procedure
calls are then mapped to ordinary procedure calls with only minimal over-
head. This of course is very efficient, as long as only one client accesses
the server exclusively. The backside is, that performance for other clients
accessing this server degrades heavily, because the server has to share its
resources with the linked client. In addition, the arguments we have given
against execution of application code by the database server process apply
here as well. That means, if the application program, which is linked with
the server, crashes, the server crashes too and may not be able to guarantee
data consistency. Nevertheless, for many situations this is an acceptable risk.
As an example, consider a developer working in a private workspace with an
interpreter tool. The interpreter together with its user interface is directly
linked with the server, while extra browsing tools are still able to connect to
the same server to additionally monitor and trace execution if necessary.

Before we discuss alternatives to the query-server approach, we briefly
summarize its advantages and disadvantages:

+ Complete reuse of existing implementation.
+ Easy concurrency control (completely within server).

+ Fast in single-user mode, when server and client run in one process.

15

www.manaraa.com

— All operations of the GRAS interface have to be realized as remote
procedure calls (more than 100 procedures).

— High communication load.
Server is performance bottle neck.

— Callbacks to clients impose high requirements on communication mech-
anismes.

3.2 Alternative Client / Server Distributions

To avoid the disadvantages of a query-server implementation, one can use
a different client /server architecture. According to [9], these are object-,
page-, and file-server architectures for object-oriented database management
systems. As the GRAS data model has many analogies to OODBMS data
models, we think it is feasible to apply the results to GRAS as well. The
measurements of [9] suggest that there is no clear performance advantage for
any of the approaches. They conclude, however, that a page-server seems
beneficial when a good clustering strategy together with a large page buffer
for clients is used, whereas an object-server is preferable for clients with a
small buffer or for poorly clustered databases.

From our point of view the page-server seems the only reasonable alterna-
tive to a query-server implementation, because it has a much simpler server
design than an object-server (the server does not need to know nodes, edges,
or graphs). This leads to an even smaller interface between client and server
than would be the case for an object-server system. Also, it is unclear, what
needs to be transferred when an object (i.e. a node in GRAS) is accessed by
a client in an object-server realization of GRAS. In section 2, we argued that
structural information (nodes and edges) is separately stored from content
information (attributes). So when transferring a node from an object-server,
we would either have to collect all its attributes and also transfer them to
the client, or transfer attribute information separately when needed. The
first solution collects unnecessary data in case of navigational access, while
the second increases communication without the benefit of exploiting clus-
tering for attribute accesses. Even worse, for pure navigational access, we
would, like in the query-server approach, not be able to utilize clustering to
reduce communication costs at all, because each node had to be transferred
separately from server to client.

16

www.manaraa.com

Hybrid and adaptable approaches like mini-page locking proposed in [8] or
de-escalating locking and communication granularity as in [5] might of course
be beneficial alternatives for GRAS, too. Nevertheless, we think they have
one severe drawback and that is increasing complexity of the server process
and the communication protocols. Additionally, the simulation experiments
conducted for these approaches show the main benefits of the adaptable
protocols for workloads with quite some degree of data contention due to
concurrent writes. As argued in sub-section 2.1, we expect few conflicts in a
client / server scenario for an integrated design environment.

The file-server approach simply uses a network file system to maintain
the database files and access pages within these files. Its main drawback
from our point of view is the necessity to obtain pages and locks with two
separate messages, one to the operating system for the file access and one to
a server process maintaining the locks.

3.3 Page- and Query-Server Communication

The question to be answered next is, whether a page-server implementation
really reduces communication costs in comparison to a query-server. This
surely depends on many factors, like caching and clustering strategies and
can therefore not be answered before a page-server is operational. To gain at
least a qualitative insight on this issue, [24] performed studies with GRAS2,
the query-server version of GRAS, to estimate how often communication
would take place in either client / server realization.

To accomplish this, the access profiles of four different sessions with the
PROGRES environment and one session with a generated prototype were
examined. These sessions are

Medical diagnosis A generated prototype defining a database to manage
diagnostical data of a hospital. Within the session, a database was built
using the graph grammar transformations specified with PROGRES.

Expression Tree A small PROGRES specification was parsed and inter-
preted within the PROGRES environment.

Binary Tree A small specification was interactively created within the PRO-
GRES environment and interpreted afterwards.

Ferry Man A PROGRES specification to solve the well known problem
of a ferry man, who has to transport a wolf, a goat, and a cabbage

17

www.manaraa.com

across a river without risking one item being eaten by another. This
specification was handled within two sessions. In session 1, an erroneous
textual specification was parsed and some of the errors corrected. In
session 2, the remaining errors were removed.

The studied sessions range from fully automatic execution of graph grammar
rules (Medical diagnosis, Expression Tree) to completely interactive editing
sessions (Ferry Man, especially session 2). This should also give an impression
on the wide range of different access profiles to data the tools in a design
environment have.

The first quantity measured is the total number of calls to the GRAS
application programming interface (API calls) in each session. Each API
call results in an RPC in the query-server implementation. We compare
these numbers to the number of pages read and written from and to stable
storage, which can be used as a lower bound for the number of transferred
pages between client and server in a page-server system. The result is shown
in figure 6. We see, that the number of API calls is much higher than the
number of disk accesses in all cases, with the two Ferry Man sessions marking
both extremes: whereas session 1 has 1600 times more API calls than disk
accesses, in session 2 this factor is only 33. If we leave these two extremes
aside, we still end up with a factor between 100 and 1000 between the number
disk accesses and the number of API calls in each session.

When we use the number of disk accesses in a session as a lower bound
for the number of page transfers in a page-server system, we now should also
find some upper bound for this quantity. We have used the average number
of different pages accessed between two checkpoints for this. A checkpoint in
GRAS is used to mark graph states which can later be reestablished using
GRAS’ undo and redo mechanism. Typically, IPSEN tools set checkpoints
for every user interaction they perform. PROGRES and the generated pro-
totypes also use checkpoints to implement non-deterministic backtracking
when executing graph grammar specifications. Here, we use two consecutive
checkpoints as boundaries for a top-level transactions.

To see why the number of accessed pages between two checkpoints is
an upper bound for the number of page transfers between server and client
in a page-server environment, one has to be aware that the GRAS2 server,
being a query-server, keeps data pages in its page cache between checkpoints.
It only flushes pages of log-files back to stable storage to be able to apply
the log in case of a crash. So the number of pages read from disk in each

18

www.manaraa.com

1800 +

1500 +

1200 +

Medical Expression FerryMan FerryMan Binary
Diagnosis Tree Sessonl Sesson2 Tree

Figure 6: Ratios between number of API calls and disk accesses.

transaction may well be lower than the number of pages accessed. By using
the total number of accessed pages for each transaction we even disregard the
possibility of inter-transaction caching in a page-server system and assume
that each page used in a transaction has to be transferred to the client
process.

The ratios between the average number of API calls and the average
number of accessed pages between two checkpoints are shown in figure 7. In
all cases, the number of API calls is still more than an order of magnitude
higher than the number of accessed pages. This means that we would expect
a page-server to have at least 10 times fewer messages than a query-server. As
table 1 shows, the time for transferring a page (2 k-Byte for GRAS2, 8 k-Byte
for GRAS3) is only two to four times higher than the time for transferring
a few bytes as parameters to an API call. Therefore, we conclude that the
communication costs for a page-server implementation of GRAS will be lower
than the costs for a query-server. Taken the ratios from our experiments, this
might only be a factor of two in the worst case and up to a factor of 400
(Ferry Man session 1) in the best case. Both factors are not realistic, because
we avoid the worst case by allowing inter-transaction caching in the page-
server. But for inter-transaction caching of pages, we need a cache coherency
protocol between client and server thereby increasing the number of messages

19

www.manharaa.com

Medica] Expression FerryMan FerryMan Binary

Diagnosis Tree Sessionl Session2 Tree
Figure 7: Ratios of average number of API calls to the average number of
accessed pages between two checkpoints.

sent, so that we cannot achieve the best case, either.

4 The GRAS Page-Server

As mentioned in section 2, the page-server variant of GRAS is implemented
in a complete new version of the system called GRAS3. The client / server
cut for this system is placed within the PageStorage sub-system (cf. section
2.3). Analogous to figure 4 we can see a simple page-server scenario in figure
8. It illustrates how the complexity of database accesses now lies within
the client processes. The page-server by itself is rather simple. It is only
concerned with concurrency control and locking on page-level.

Since most of the database functionality is executed by the client process,
callbacks between the DBMS and the application code are simple procedure
calls in the page-server system. Compared with the query-server, where every
callback was an RPC between client and server, this eases attribute evalua-
tion to a great extend. The drawback, however, is that now every application
accessing a graph needs to know how to evaluate an invalid attribute. This
should be no problem for most applications, since code accessing an attribute

20

www.manharaa.com

Application 1 Application 2
Event Event
SchemeAndAttributeManagement | Trigger SchemeAndAttributeManagement | Trigger
Action Action
ChangeM anagement Machine ChangeM anagement Machine
GraphStorage GraphStorage
Virtual RecordStorage Virtual RecordStorage
PageCache PageCache
ClientSideComminterface ClientSideComminterface
X 4

ServerSideCommlinterface

PageCache

PageFiles

Figure 8: Simple scenario with one page-server and two clients.

normally will also be aware of its evaluation function. This is different for
unspecific applications like graph browsers, which can only use schema infor-
mation to access a database.

One solution for this problem would be to store the code for attribute
evaluation functions together with the schema defining the attribute. This
code could then be executed by all clients. Another solution is to request
attribute evaluation from a different database client process. This could be
issued by GRAS’ event trigger machine or a similar mechanism like ToolTalk
[16] which would even allow to start a client which is able to perform the
task. Note that even though delegating attribute evaluation to a different
client involves inter-process communication, the problems of nested callbacks
should not occur here, since only the first request to evaluate an attribute is
sent to the evaluating process, whereas all remaining evaluations are handled
by that process internally, as depicted in figure 9. This is also the reason, why
the communication overhead induced by this solution would not be higher
than for the query-server system.

This leads to the second utilization of callbacks we have mentioned for
the query-server: action execution by clients initiated by the event trig-
ger machine. As can be seen in figure 8, every client process also has an
EventTriggerActionMachine as part of its architecture. This means, also the
callbacks for GRAS’ trigger mechanism can be handled without inter-process

21

www.manaraa.com

Client 1 Client 2

- -

Compute attribute 'pos’ for node n C

Get attribute 'pos’ from node n’ C

Compute attribute ' pos’ for node n’ Ci

Get attribute 'pos’ from node n”’ C

Compute attribute ' pos’ for node n”’ C

—* Ordinary procedure call
- - = Inter-process communication / implicit invocation

Figure 9: Call stacks of two client processes. Client 1 requests an attribute
evaluation form Client 2.

communication, when only one client is involved. This should be the most
common case, e.g. when triggers are used for consistency maintenance. How-
ever, IPSEN uses triggers also to synchronize clients (e.g. a graph browser is
notified when it needs to update its display), and so we need a distributed
event-trigger machine for GRAS3. In this sense, the server of figure 8 is
too simple. The page-server of GRAS3 also has capabilities to promote trig-
gers and trigger activations between clients as a separate sub-system not
shown there. The communication overhead for the distributed event-trigger
machine is still not higher than in the query-server case, though.

GRAS3 uses Modula-3’s Network Objects [3] to realize inter-process com-
munication. To deal with asynchronous callbacks, the system uses threads.
This eases the implementation of e.g. the distributed event trigger machine.
On the other hand, client processes now have to be aware of concurrent
threads, too.

4.1 Cache Coherency protocol

In all data shipping client /server architectures, clients buffer data which
is primarily maintained by the server. To achieve this, clients copy and

22

www.manaraa.com

transfer data from the server into their caches. They can then work on these
copies and may even modify them locally. For the GRAS page-server, [24]
developed a C*-Protocol (concurrency control and cache coherency protocol)
called CB-R/2Q. Tt is based on the CB-R protocol [12], but also integrates
replica state and lock mode as is suggested by [28] to achieve some dynamism
for propagation of updated pages.

The protocol is completely specified by a formal model enlightening the
complex interactions between client cache management, nested transaction
implementation, and client / server communication and also served as a guide-
line for the implementation. Table 2 shows in what lock modes / replica states
a page can be, either viewed from a client or from the server. In figure 10, the
state-transition diagram for a page from the clients point of view is depicted.
As can be seen, instead of removing a page from the client cache after a
callback, the protocol allows to keep the page with a P-lock. This indicates,
that access to this page is not allowed, because it is used by a different client.
Nevertheless, a page in lock-mode P can be dropped from the client-cache if
necessary. Otherwise it will be updated when the client changing the page
commits its transaction.

X exclusive Write lock, assures exclusive access for one
client.

S shared Read lock, page is reserved for read access.
This lock is only used by clients.

C cached Server: the page is buffered at client side but

also available for read access to other clients.
Client: the page is buffered but currently un-
used. It can be read, if the lock is locally
upgraded into an S-lock.

P pending The page is cached, but locked by another
client with an X-lock and therefore blocked
(client only).

O out-of-date Virtual lock. Pages marked with this “lock”
are out dated or not locked at all.

Table 2: Lock modes for pages.

The protocol implementation tries to reduce the communication over-
head induced by the cache coherency protocol as far as possible. It does so

23

www.manaraa.com

Callback

Other Abort/
Other Commit

Write Request
Drop
Own Commit Drop
Own Abort
Own Commit/
Own Abort
Upgrade
Write Request
Write
Upgrade

Read Request

Figure 10: State transition diagram for lock modes of one page at the client.

by collecting update messages at transaction commit for several pages and
piggybacking protocol messages on data messages whenever possible.

4.2 Performance of the Page-Server

To directly compare the performance of the two client /server architectures
for GRAS (GRAS2 and GRAS3), we implemented the the OO1 benchmark
[6] for both systems. The results indicate that the performance of the page-
server system is better than that of the query-server system, given server and
client are separate processes. A client linked together with the query-server,
though, outperforms the page-server by a factor of 3 for read- and 10 for
write-accesses. One reason of course is that no inter-process communication
takes place with this “client /server” variant. Nevertheless, the new GRAS
implementation still has much potential for optimizations on the client side,
too.

24

www.manharaa.com

5 Summary

We have presented our work on client / server distribution aspects in struc-
ture-oriented DBMS. We studied two different distribution alternatives using
the graph DBMS GRAS as an example system. To clarify the context in
which the system is used, we first gave a brief introduction to IPSEN and
GRAS. Following that, we discussed two levels of client /server distribution
for GRAS in detail, namely query- and page-server, outlining performance
and protocol aspects. Both alternatives are implemented in two different
versions of GRAS, which both are used for the tools developed at our de-
partment.

We investigated the communication costs of the two client /server ap-
proaches by measuring the access profile of existing applications for the
query-server and estimating the number of page transfers in a corresponding
page-server system. This analysis revealed a clear performance advantage for
the page-server system.

The use of a page-server as underlying distribution mechanism made it
necessary to redesign some of GRAS sub-systems to achieve the same func-
tionality as with the query-server. One example for this is the event-trigger
machine. The overall architecture, though, stayed the same. We also briefly
reviewed a cache coherency protocol for the page-server which adds a dy-
namic propagation strategy to the CB-R protocol.

References

[1] M. P. Atkinson, F. Bancilhon, D. J. DeWitt, K. R. Dittrich, D. Maier,
and S. B. Zdonik. The Object-Oriented Database System Manifesto. In
H. Garcia-Molina and H. V. Jagadish, editors, Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, page
395, Atlantic City, NJ, 23-25 May 1990. SIGMOD Record 19(2), June
1990.

[2] P. Bernstein. Database System Support for Software Engineering. In
Proc. of the 9th Int. Conf. on Software Engineering, pages 166-178.
IEEE Computer Society Press, 1987.

25

www.manaraa.com

3]

[11]

[12]

Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Net-
work Objects. SRC Research Report 115, Digital Systems Research
Center, Palo Alto, February 1994.

Thomas Brandes. Gras design and implementation of a graph storage.
Master’s thesis, University of Dortmund, 1984.

M. J. Carey, M. J. Franklin, and M. Zaharioudakis. Fine-grained sharing
in a page server OODBMS. SIGMOD Record (ACM Special Interest
Group on Management of Data), 23(2):359 370, June 1994.

R. G. G. Cattell and J. Skeen. Object Operations Benchmark. ACM
Transactions on Database Systems, 17(1):1-31, March 1992.

Honf-Tai Chou, David J. DeWitt, Randy H. Katz, and Anthony C. Klug.
Design and implementation of the wisconsin storage system. Software-

Sheauyin Chu. Database support for electronic CAD applications: Per-
formance and architecture. Technical Report UTUCDCS-R-94-1849,
University of Illinois at Urbana-Champaign, December 1994.

D. DeWitt, P. Futtersack, D. Maier, and F. Velez. A Study of
three Alternative Workstation-Server Architectures for Object-Oriented
Database Systems. In Proceedings of the Sizteenth Very Large Data
Bases Conference, pages 107 121, Brisbane, Australia, 1990.

W. Emmerich, W. Schafer, and J. Welsh. Databases for Software En-
gineering Environments — The Goal Has not yet Been Attained. In Ian
Sommerville and Manfred Paul, editors, Proceedings of the 4" Euro-
pean Software Engineering Conference, pages 145 162. Lecture Notes in
Computer Science Nr. 717, Springer-Verlag, September 1993.

Wolfgang Emmerich. Tool Construction for Process-Centered Software
Development Environments based on Object Databases. PhD thesis,
Dept. of Mathematics and Computer Science, University of Paderborn,
Germany., 1995.

Michael J. Franklin and Michael J. Carey. Client-server caching revis-
ited. In Proc. Int. Workshop on Distributed Object Management, pages
252-274, Edmonton (Canada), August 1992.

26

www.manaraa.com

[13] Felix Gatzemeier. Frameworks of Interactive Document Editing En-
vironments with Often Changing Schemata. Master’s thesis, RWTH
Aachen, 1998. in german, to appear.

[14] Object Management Group. The common object request broker: Ar-
chitecure and specification. Technical report, Object Management
Group, 1991.

[15] Dennis Heimbinger. Experiences with an object manager for a process-
centered environment. In Proceedings of the 18th Conference on Very
Large Databases, Morgan Kaufman pubs. (Los Altos CA), Vancouver,
August 1992.

[16] Astrid M. Julienne and Brian Holtz. ToolTalk & Open Protocols - Inter-
Application Communication. Prentice Hall, 1994.

[17] R. Kadia. Issues encountered in building a flexible software development
environment : Lessons from the arcadia project. In Proceedings of ACM
SIGSOFT Fifth Symposium on Software Development Enuvironments,
pages 169-180, Dec 1992.

[18] Norbert Kiesel, Andreas Schiirr, and Bernhard Westfechtel. Gras, a
graph-oriented (software) engeneering database system. Information
Systems, 20(1):21-51, 1995.

[19] Peter Klein. Designing software with modula-3. Technical Report 94-16,
RWTH Aachen, 1994.

[20] A. M. Kotz, K. R. Dittrich, and J. A. Miille. Supporting Semantic
Rules by a Generalized Event/Trigger Mechanism. In M. Missikoff J.W.
Schmidt, S. Ceri, editor, Proceedings of the International Conference on
Eztending Database Technology (EDBT ’88), volume 303 of LNCS, pages
76 91, Venice, Italy, March 1988. Springer.

[21] Katharina Mehner. Describing the Behavior of Software Systems. Mas-
ter’s thesis, RWTH Aachen, 1997.

[22] Oliver Meyer. Tools for a Reader-/Writer Environment with Often
Changing Schemata. Master’s thesis, RWTH Aachen, 1998. in german,
to appear.

27

www.manaraa.com

[23] M. Nagl, editor. Building Tighthly Integrated Software Development
Environments — The IPSEN Approach. LNCS 1170. Springer-Verlag,
1996.

[24] Reiner Nix. Distributing a database management system: A worksta-
tion / server-architecture for the post-relational dbms gras. Master’s
thesis, RWTH Aachen, Department of Computer Science 111, 1996.

[25] Wolfgang Reimesch. Design and implementation of a communication
layer for database systems. Master’s thesis, RWTH Aachen, Department
of Computer Science 111, 1995.

[26] Andreas Schiirr. Operational Specifications with Programmed Graph-
Rewriting-Systems. Dissertation, RWTH Aachen, Department of Com-
puter Science II1, 1991.

[27] Sun Microsystems, Inc. Network Programming Guide, 1990.

[28] Kevin Wilkinson and Marie-Anne Neimat. Maintaining consistency of
client-cached data. In Proceedings of the 16th VLDB Conference, Bris-
bane, "90.

[29] Stefan Zohren. The gras-server — a client-server-realization of gras. Mas-
ter’s thesis, RWTH Aachen, Department of Computer Science 111, 1992.
in german.

[30] Albert Ziindorf. PROgrammed GRaph-rEwriting-Systems: Implementa-
tion and Use. Dissertation, RWTH Aachen, Department of Computer
Science 111, 1995.

28

www.manharaa.com

