
www.manaraa.com

Client / Server Distribution in aStructure-Oriented Database ManagementSystemRoland BaumannDepartment of Computer Science IIIAachen University of Technology, Germanyroland@i3.informatik.rwth-aachen.deAbstractClient / Server distribution in (software) design environments canbe achieved by distributing an underlying repository database man-agement system. Several alternative approaches for such a distri-bution exist, which di�er in the layer of the architecture at whichclient / server communication takes place. We discuss two approaches| query-server and page-server | we have studied in the context ofthe graph database management system GRAS which is used in theIPSEN project. We focus this discussion on the impact the two ap-proaches have on DBMS architecture and functionality as well as onperformance with respect to the communication overhead induced bythem. The work which has been done to evaluate and implement theseapproaches in GRAS is presented and problems of both alternativesand the solution we have found are outlined.1 IntroductionSoftware systems for application areas like CAD or software engineering han-dle complex data structures to model the design objects they deal with. Toe�ectively support the work of a design team, these software systems haveto store the design documents persistently [2, 10]. For this purpose theyoften use database management systems as repositories. In contrast to more1

www.manaraa.com

traditional applications, e.g. of business administration where data has arather at structure and relational database management systems are verywell suited, design applications model structurally rich data. Hence, it seemsnatural for such applications to use a DBMS with a data model that al-lows to handle highly structured data in a straightforward manner. SuchDBMSs are called structure-oriented DBMSs. Object-oriented DBMSs [1]are an example of structure-oriented DBMSs.In general, more than one developer works on a project. So the projectdatabase has to be available at the same time to di�erent people working atdi�erent workstations. While this is uncritical as long as only one designerat a time accesses a document stored in the repository, it becomes a problemif this restrictive policy cannot be ensured. As an example, consider thecase where project administration information is also maintained with thehelp of the underlying DBMS. Developers have to be able to access theadministration information concurrently. So a design environment has todeal with concurrency and distribution. Choosing the underlying DBMSas the part of the environment to tackle these problems is a very naturaland successful approach. It leads to a logically still centralized view of therepository and at the same time eases enforcement of data consistency andmakes the design data highly available.But even if distribution and concurrency control of a design environmentshould be handled by its repository DBMS, several alternatives remain howthis can be realized. We investigate two of these alternatives in this paper,namely distribution with a query-server and with a page-server DBMS. Westudy them using the DBMS GRAS as an example system. GRAS was buildto e�ciently store design documents in form of directed, attributed graphs.To be able to evaluate di�erent client / server architectures, several as-pects must be taken into account. First of all, the distribution scenario,i.e. the way the system is used by multiple users and tools, must be madeclear. This highlights the requirements imposed on the system regardingconcurrency control and transaction support. Next, the introduction of aninter-process communication layer also inuences the complexity of the over-all system and can even a�ect the functionality of other parts of the DBMS.Last but not least, communication costs of the distribution cut should be aslow as possible, because inter-process communication is still a highly timeconsuming factor. Communication costs of a client / server distribution de-pend on the number and size of the messages sent between client and server.We have studied all three aspects of client / server distribution mentioned2

www.manaraa.com

above for the query-server and the page-server implementation of GRAS andpresent our results in this paper.1.1 Related WorkResearch on client / server distribution and performance aspects in databasemanagement systems for engineering environments was already described byseveral authors from the software engineering as well as the database com-munity. The work presented in this paper di�ers in several respects frompreviously published work. DeWitt et al. [9] study object-server, page-server,and �le-server architectures for object-oriented database systems. They per-form their measurements using a benchmark especially developed for thistask. This benchmark runs on three prototype systems based on the WiSS[7] which were implemented as test beds for the measurements. In this pa-per, we study the communication pro�le of existing applications using theDBMS GRAS, which is the normal DBMS for these applications. In thisway, we hope to measure the exact access pro�les our tools impose on thedatabase. Like [9], we focus only on the client / server architectures of thesystems, while keeping the rest of the DBMS constant.This is in contrast to the work of Chu [8], who considered four di�erentcommercial DBMSs to evaluate their use for electronic CAD applications,including relational and object-oriented DBMSs. The experiments were per-formed with the VLSI layout editing system Magic. To ease the integrationof Magic with the di�erent DBMSs, only load / store operations of layoutcells were implemented and measured, so that access to data was coarse-grained from the DBMS point of view. Chu also discusses object-server andpage-server architectures for object-oriented DBMSs and the impact of �ne-grained locking in a page-server system. In contrast, the tools we use inour experiments access their persistent data in a �ne-grained fashion. Also,we are not concerned with the locking granularity of our page-server, here.Rather, we focus on the impact query-server and page-server architectureshave on functional aspects of GRAS and their communication costs.From an application point of view, the work of Emmerich [11], is the onemost closely related to ours. He also investigates �ne-grained access to data insoftware engineering environments. To evaluate the performance of di�erentDBMSs, including relational and object-oriented systems as well as an earlyversion of GRAS without client / server architecture, he uses a sophisticatedbenchmark which closely resembles the access pro�le of tools in an integrated3

www.manaraa.com

software engineering environments. The work is concerned with the overallperformance of the systems, however, and does not speci�cally study theimpact of client / server distribution.1.2 Structure of the PaperThe rest of this paper is structured as follows. In section 2 we introduce thesoftware engineering environment IPSEN and its underlying DBMS GRAS.This provides a basic understanding of our approach to �ne-grained integra-tion and shows how IPSEN tools access their data. We will also discuss therequirements on client / server distribution in an overall integrated IPSENenvironment. Following this, in section 3 we discuss the query-server im-plementation of GRAS as a �rst solution to distribute the functionality ofthe system. We outline the advantages and disadvantages of this approachregarding the GRAS functionality and also present our experimental mea-surements of the (expected) communication pro�le of IPSEN tools for query-and page-server implementation. Then section 4 gives an overview of how thepage-server distribution of GRAS is designed and implemented and again,what impact this has on the functionality of the system. We conclude thepaper with a summary in section 5.2 IPSEN and GRASThe incremental, interactive, and integrated project support environment IP-SEN [23] was developed in several research prototypes at the Department ofComputer Science III at the Aachen University of Technology. The goal of theIPSEN research activities is to develop languages, methodologies, and toolsfor e�cient and exible software engineering environments. The project usesan a priori approach to data integration, so that all tools rely on a commondata model for their documents. To allow for �ne-grained relations betweenand within documents, all IPSEN documents are stored as graphs, most oftenas abstract syntax graphs. Abstract syntax graphs are based on abstractsyntax trees, representing the context-free structure of a document. Nodes inthis tree are called increments, and each increment represents a non-terminalsymbol of the grammar de�ning the document structure. The syntax tree isaugmented with context-sensitive and semantical edges between increments,so that we end up with a directed, node and edge labeled graph.4

www.manaraa.com

All IPSEN tools mark one increment of an abstract syntax graph as thecurrent increment. They navigate through a document by moving a cur-sor from the current increment to another increment which in turn becomesthe current increment. Changes are always performed on the current incre-ment. A change can a�ect the increment itself or the whole subtree below it,modifying the structure of the graph.To ease development of new tools, the IPSEN approach postulates theuse of a framework for its tools. The tool functionality is speci�ed withgraph rewriting rules. This can be done with PROGRES (PROgrammingwith GRAph REwriting Systems), a language and environment to edit andexecute graph grammar speci�cations [26, 30]. Code in Modula-2 /Modula-3 or C can be generated from these speci�cations and embedded into theIPSEN framework. To measure the impact on communication costs the twostudied client / server approaches have, we used the PROGRES environment(which itself is built using the IPSEN framework) and prototypes built fromgenerated code of PROGRES speci�cations as example applications.All IPSEN tools use the structure-oriented DBMS GRAS as their repos-itory. GRAS (for GRAph Storage) [18] was especially designed to meet therequirements of IPSEN for a repository which is able to store complex �ne-grained data. According to IPSEN's view of documents as abstract syntaxgraphs, GRAS' data model is the directed, attributed graph with typed nodesand edges. Since the two client / server implementations we present in thispaper use di�erent versions of the core GRAS system, we will briey reviewthe history of GRAS next.Development of GRAS started several years ago [4]. The system was de-signed as a program library enabling every application that was linked withthis library to store its data as persistent graphs. The �rst step towards aclient / server architecture was done in [29] by implementing an RPC inter-face on top of the library. Experiences with this �rst distribution identi�edsigni�cant problems regarding both, functionality and performance (cf. sec-tion 3). This lead to many improvements which were mainly contributedby [25]. The improved query-server system is currently used by most of thetools of the IPSEN project. We will refer to this version of GRAS as GRAS2in the following.At the time of the �rst attempt to distribute GRAS as a client / serversystem, a di�erent project was launched aiming to reimplement GRAS com-pletely in the object-oriented programming language Modula-3. The mainconcern of this project is to clean up the code and at the same time test new5

www.manaraa.com

features without interfering too much with the IPSEN tools still in use. Thepage-server we describe in section 4 is realized in the new GRAS system,which we will refer to as GRAS3. This page-server variant of GRAS is al-ready used by two IPSEN-like tools. The �rst is an analysis and developmenttool which stores software design documents like architecture and interactiondiagrams as graphs [19, 21]. The second, currently being developed, aims ata �ne-grained reader-writer environment for electronic books [22, 13].The next sub-sections will give details on the requirements of a client / ser-ver architecture for GRAS. After outlining the multi-user scenario we havein mind in 2.1, we will present the basics of GRAS' functionality and archi-tecture in 2.2 and 2.3, respectively.2.1 Client / Server ScenarioAs mentioned in the previous section, we need to clarify the client / serverscenario for IPSEN tools before we can evaluate the two approaches to dis-tribution in GRAS. We do this here by highlighting the di�erences betweenclient / server systems for business administration on the one side and anintegrated design environment like IPSEN on the other.Like many other aspects of database system support for the two applica-tion domains, the client / server scenarios aimed at by them are very di�erent,too. First of all, design teams work in a network of powerful workstationswith no clear dominating server machine. This is in contrast to the still main-frame oriented style of client / server distribution for business administrationsystems. This makes it possible to burden the client machines with moretasks otherwise performed by the mainframe, since the sum of the computa-tional power of all client machines surpasses the power of a single workstationserver.Furthermore, the access of client applications to the database in design en-vironments is quite di�erent from that in business administration, too. Usu-ally, designers will work on their documents within their private workspacesfor quite a long time before sharing a �rst version with other designers. Andeven then, this sharing rather means shared reading without interference ofa writer, because further development of the document will result in a newversion being created. In this way other developers are still able to work withthe previous released version without direct interference of a writer. Sharedaccess to documents will only be granted to a limited number of clients, saythe members of a design team. This is in contrast to, e.g. banking appli-6

www.manaraa.com

cations, with potentially hundreds of clients each potentially accessing thesame database concurrently for money transfers.On the other hand, there are hot spots in design environments, too.Project administration is one example. In an overall integrated design envi-ronment, tools of each project member need to access the status informationof the project to derive the agenda of the project member and to reportabout the status of ongoing work, so that the agendas of other team mem-bers can be updated (e.g. implementation of a module can only start whenits interface is �xed).To conclude, in the scenario we are aiming at, the common case is asingle user with a private workspace reading data from a shared repository.When data is shared, there should be few conicts due to concurrent writes.An exception is project administration, where we have a higher potential fordata contention but also shorter access times for the typical operations onthis data.2.2 Functionality of GRASThe programming interface of GRAS allows to create and delete nodes, createand delete edges, initialize and modify attributes of nodes in form of bytearrays of arbitrary length, and to maintain indexes on attributes. A node ina GRAS graph can be characterized as a pair (node id, node type), an edge astriple (source node id, edge type, sink node id), and an attribute as (node id,attribute name, attribute value). GRAS supports almost all kinds of querieson these tuples, e.g. we could query for all outgoing edges of a node (sourcenode id, ?, ?).1 Queries can have single values, sets, or relations as results,e.g. the previous query delivers a relation of pairs (edge type, sink node id).Beside these basic operations, GRAS o�ers a mechanism for automaticattribute evaluation via callbacks to a client program. Consider as an ex-ample a list of nodes linked with edges of type 'next' as shown in �g. 1.Each node has an attribute 'pos' giving the position of the node in thelist. The value pos of this attribute for a node n can be computed aspos(n) = pos(n: next�) + 1 j 1, which should be read as 'the positionof node n is either one higher than the position of its predecessor (incomingedge 'next') or one, if there is no predecessor of n and hence n is the head of1Not supported are queries of the form (?, edge type, ?), (?, attribute name, ?), and(?, ?, attribute value), as well as queries leaving all components unspeci�ed.7

www.manaraa.com

the list'. This would be implemented by �rst declaring a static dependencyrelationship between the position attribute of a node in the list and the po-sition attribute of the node connected to it with an incoming 'next' edge ontype level. This static dependency tells GRAS when to mark dependent at-tributes as invalid. We could, e.g., insert a new node in the middle of the listof �g. 1 in which case all position attributes of the nodes to the right of thenew node needed recomputation and would be marked invalid by GRAS. To
List

Node

pos = 1

List
Node

List
Node

List
Node

pos = 2 pos = 3 pos = 4

next next nextFigure 1: Linked list with position attributes.enable GRAS to automatically re-evaluate invalid attributes, the applicationprogram then has to install a callback procedure which will be called everytime GRAS tries to read an invalid position attribute. Note that this mightresult in a recursion in our case, because to compute a position attribute,the callback-procedure has to read the position attribute of the predecessornode, and this as well can be invalid, so that GRAS starts another callback.2Callbacks are also employed by another feature of GRAS. A client can ac-tivate a demon that will notify it via callbacks when a speci�ed event occurs.Such events can be all graph changing commands, but also undo-redo (cf.sub-section 2.3), and transaction-start / end. This gives GRAS some activebehavior using an event-trigger-action mechanism like the one described in[20].2.3 Undistributed Architecture of GRASThough the implementations of GRAS2 and GRAS3 di�er in many respects,the coarse architecture of the core systems is the same for both. GRAS hasa layered architecture as shown in �g. 2. The sub-systems have the followingfunctionality:PageStorage resides directly above the network-�le-system. It provides aview on �les as a sequence of memory pages. Pages are cached internallyso that accesses to disk are reduced.2Cycles in the evaluation process are detected and lead to an error message.8

www.manaraa.com

SchemeAndAttributeManagement

ChangeManagement

GraphStorage

VirtualRecordStorage

PageStorage

Machine
Action
Trigger
Event

NodeStorage EdgeStorage AttributeStorage IndexStorage

Figure 2: The architecture of GRAS without client / server distribution.VirtualRecordStorage installs an e�cient access structure on page-�les.Pages store sequences of database records. GRAS uses dynamic hashingto compute the page a record is stored on and static hashing for therecord location on a page.EventTriggerActionMachine provides active behavior to the higher lay-ers of GRAS and the GRAS clients. It uses callbacks to inform clientsabout occurring events. Events are detected by the three layers dis-cussed next.GraphStorage is the �rst layer of the GRAS architecture implementing anabstract data type for graphs. This layer already provides navigationalaccess to a directed graph. Attributes are untyped, i.e. byte-arrays.It also detects events like creation / deletion of a node and noti�es theevent-trigger-action-machine about them.ChangeManagement handles recovery situations of all kinds. It provideslinear undo / redo, nested transactions, and crash recovery. It also sup-ports versioning, but does not implement a �xed versioning concept.SchemeAndAttributeManagement adds a type concept to the abstractgraph data type. Nodes are instances of node types / classes and nodetypes form an inheritance hierarchy. Node types de�ne typed attributes9

www.manaraa.com

for their instances. Attributes can be meta (class wide), intrinsic (in-stance), or derived (value depends on other attributes of the same orother nodes). Edge types determine the classes of source and targetnodes of edges. Edge types also de�ne source and target cardinalitiesto restrict the number of incoming or outgoing edges of the respectivetype at a node.For the following discussion on distribution aspects, it is important toknow that GRAS stores di�erent parts of a graph in di�erent storages. As canbe seen in �g. 2 the sub-system GraphStorage contains the four sub-systemsNodeStorage, EdgeStorage, AttributeStorage, and IndexStorage. These sub-systems implement persistence for nodes, edges, long attributes, and indexedattributes, respectively. This design allows to keep the structural informationof a graph (nodes and edges) together on relatively few pages, while unstruc-tured data are stored separately. The goal of this separation is to speed upnavigation, because in this way many more nodes and edges �t on one pagethan would if attributes, nodes and edges were stored together on the samestorage pages. On the other hand, if attributes have to be read, the designis not a drawback, because the total amount of space for node and attributeinformation is almost the same, regardless whether they are separated or not,so that performance is mainly restricted by main-memory and cache size. Tomake sure navigation is e�cient, GRAS tries to cluster neighboring nodes onthe same page. Whether or not two nodes should be treated as neighbors canbe determined by the application. This separation of structural informationfrom unstructured contents distinguishes GRAS from most object-orientedDBMS, which usually store all information of an object in one continuousblock of memory.3 DistributionThe �rst thing to do when implementing a client / server architecture for aDBMS, is to select the architecture layer on which inter-process communi-cation should take place. In [9], three alternatives are investigated: object-server, page-server, and �le-server. These are all data-shipping approaches:they all ship data maintained by the server to the clients, so that these canwork on it for some time autonomously. An additional alternative that wehave studied is a query-server. This kind of server does not ship data butmodi�es it according to client-requests and answers client-queries. Query in10

www.manaraa.com

our context means a navigational access to the graph databases, just like theprogramming interface of GRAS o�ers.Though query-server architectures have been blamed to be unsuitable fornavigational access to data ([9], [8], [11]), they do have their advantages.First of all, we have to note that the criticism mainly concerns query-serverswith a high level query language such as SQL which does not support therequired traversals well, so that many joins might be necessary to computea result. This is di�erent from our approach, because the queries o�ered bythe GRAS server are the same as for the undistributed system. Moreover, wethink an architecture like the one proposed for GRAS2 is a natural choice fordistribution in heterogeneous environments. Because only the server needsto access the physical representation of data on storage pages, the clientsmay well operate on completely di�erent operating systems and platforms.What is required though, is a machine independent representation of datasent as parameters and results to queries. This however is o�ered by mostRPC system, e.g. the XDR encoding for the Sun RPC system [27]. The samearguments make the query-server the favorite candidate for use in a CORBA[14] environment.The Triton object manager, which is used as repository in the Arcadiaproject [17] is another example for a query-server system. In [15], access-ing the server from applications written in di�erent programming languagesserves as a main argument for the query-server architecture. This basicallysupports our argument for favoring query-servers in heterogeneous environ-ments.In the following sub-sections we will introduce the query-server imple-mentation of GRAS (GRAS2) and discuss its advantages and disadvantagesregarding the functionality and architecture of the system. We will then re-view the other alternatives for client / server distribution (object-server and�le-server) and argue why we think they are infeasible for GRAS. Finally, sub-section 3.3 presents the experiments we conducted to evaluate the commu-nication costs query-server and page-server architectures impose on GRAS.3.1 Query-Server Realization of GRASThe architecture of the GRAS query-server implementation di�ers only in thetop-level layer from its undistributed counterpart. As the new top-most layer,we added an RPC interface to the system, so that any calls from a databaseclient to the server are realized by remote procedure calls. This architecture,11

www.manaraa.com

which was also presented in [18], is shown in �gure 3 in a compact form.
Machine
Action
Trigger
Event

ClientServerDistribution

SchemeAndAttributeManagement

ChangeManagement

GraphStorage

VirtualRecordStorage

PageStorageFigure 3: GRAS architecture with query-server distribution.With this distribution style, all data is still accessed and changed ina centralized fashion, because all data is maintained by the server processexclusively. Clients can read and modify graphs by sending correspondingrequests to the server process. Here, these requests are exactly the sameinterface calls as in the undistributed case. This centralization simpli�esintegrity maintenance and concurrency control to a great extent when manyclients work on the same data, because only the server process performs dataaccesses.On the other hand, when many clients concurrently access data, the serverneeds to answer many requests at once. This imposes a heavy load on theserver process, because it has to perform all database functionality for all itsclients. Figure 4 shows a simple scenario with only one server and two clientapplications accessing it. In general, GRAS2 support a multi-client /multi-server scenario, so that not one single server maintains all data. Still, serverperformance may severely limit the performance and scalability of the overallsystem with this kind of distribution.A quite di�erent problem arises due to the special interface of GRAS. Asmentioned in section 2, GRAS uses callbacks to evaluate derived attributesand also for its event-trigger mechanism. These callbacks access code in theclient application and hence have to be converted into remote procedure callsin this architecture. This has two consequences:1. Client processes must in principle always be ready to receive callbacksfrom the server, even during time intervals when they are not involvedin communication with the server.12

www.manaraa.com

PageStorage

VirtualRecordStorage

GraphStorage

ChangeManagement

SchemeAndAttributeManagement

ServerSideCommInterface

Trigger
Action

Machine

Event

ClientSideCommInterface

Application 2Application 1

ClientSideCommInterface

Figure 4: Simple scenario with one query-server and two clients.2. When evaluating derived attributes, the common case is to use values ofother attributes to compute the new value (see the example of the 'pos'attribute above). Hence, the client which computes the new derivedvalue has to query the server for the values of other, de�ning, attributes.If these de�ning attributes are also derived, their value in turn mightneed recomputation, which leads to a callback to the client and so on.This means, queries from client to server and callbacks from server toclient can be nested, as depicted in �gure 5.These two problems inhibit the use of one of the classical RPC mecha-nisms, which commonly do not support callbacks. Therefore [25] introduceda new communication infrastructure that is capable to manage such nestedcallbacks and also enables clients to respond to server requests when neces-sary.Triton [15] has to deal with similar problems. In contrast to GRAS, Tritonstores C++ objects as entities. And whereas the code for attribute evaluationin GRAS is executed by the client processes, the code for invocated methodsin Triton is executed by the Triton server. While this supports the useof Triton in heterogeneous environments, it also has severe disadvantages.First of all, it further increases the load on the server machine, loweringthe overall performance. Second, the code does not belong to the databasemanagement system but to the application using the DBMS. Hence, it mightnot be as reliable as the code for the server. In case of a programming error,13

www.manaraa.com

...

...

...

...

ServerClient

Get attribute ’pos’ from node n

Compute attribute ’pos’ for node n

Get attribute ’pos’ from node n’

Compute attribute ’pos’ for node n’

Get attribute ’pos’ from node n’’

Compute attribute ’pos’ for node n’’

Figure 5: Call stacks of a client and a server process with nested callbacks.however, the server process might crash and in this way not only the clientinvoking the faulty method but all clients accessing the server would su�erdamage, maybe even data loss. A solution to this problem would be to use aninterpreted language. The code could then either be executed in a controllingenvironment at the server side or shipped to the client for execution.The problem of asynchronous callbacks due to action execution of theevent trigger machine, however, seems to be unavoidable. As long as activerules are only used to enforce or check consistency constraints, the solutionsoutlined in the previous paragraph were also applicable. But in integratedenvironments like IPSEN, tools use this mechanism also to synchronize them-selves with other tools. Therefore, a communication mechanism that is ableto deal with this kind of callbacks is necessary anyway, even, as we will seelater, in the page-server system.Besides the fact, that a query-server may well become a performance bot-tle neck due to the many client-requests it has to answer, the query-serversolution also lacks performance because of the huge number of remote pro-cedure calls between client and server (consider e.g. the number of RPCsnecessary to perform a complete traversal of an abstract syntax tree). SinceRPCs involve inter-process communication, they are several orders of mag-nitude slower than local procedure calls. Table 1 lists the times necessary for14

www.manaraa.com

transferring data of varying size between processes with remote procedurecalls. Size in bytes Execution time in ms1 7.810 7.9100 8.21000 9.74000 17.98000 28.4Table 1: Communication costs for data chunks of varying sizes (taken from[9]). Times were gathered between two Sun 3 / 80 processors running the SunRPC software and Version 4.03 of the SunOS.To circumvent this problem, [25] o�ers an elegant solution: client andserver can be linked together into one operating system process while stilltransparently using the same communication interface. 'Remote' procedurecalls are then mapped to ordinary procedure calls with only minimal over-head. This of course is very e�cient, as long as only one client accessesthe server exclusively. The backside is, that performance for other clientsaccessing this server degrades heavily, because the server has to share itsresources with the linked client. In addition, the arguments we have givenagainst execution of application code by the database server process applyhere as well. That means, if the application program, which is linked withthe server, crashes, the server crashes too and may not be able to guaranteedata consistency. Nevertheless, for many situations this is an acceptable risk.As an example, consider a developer working in a private workspace with aninterpreter tool. The interpreter together with its user interface is directlylinked with the server, while extra browsing tools are still able to connect tothe same server to additionally monitor and trace execution if necessary.Before we discuss alternatives to the query-server approach, we brieysummarize its advantages and disadvantages:+ Complete reuse of existing implementation.+ Easy concurrency control (completely within server).+ Fast in single-user mode, when server and client run in one process.15

www.manaraa.com

{ All operations of the GRAS interface have to be realized as remoteprocedure calls (more than 100 procedures).{ High communication load.{ Server is performance bottle neck.{ Callbacks to clients impose high requirements on communication mech-anisms.3.2 Alternative Client / Server DistributionsTo avoid the disadvantages of a query-server implementation, one can usea di�erent client / server architecture. According to [9], these are object-,page-, and �le-server architectures for object-oriented database managementsystems. As the GRAS data model has many analogies to OODBMS datamodels, we think it is feasible to apply the results to GRAS as well. Themeasurements of [9] suggest that there is no clear performance advantage forany of the approaches. They conclude, however, that a page-server seemsbene�cial when a good clustering strategy together with a large page bu�erfor clients is used, whereas an object-server is preferable for clients with asmall bu�er or for poorly clustered databases.From our point of view the page-server seems the only reasonable alterna-tive to a query-server implementation, because it has a much simpler serverdesign than an object-server (the server does not need to know nodes, edges,or graphs). This leads to an even smaller interface between client and serverthan would be the case for an object-server system. Also, it is unclear, whatneeds to be transferred when an object (i.e. a node in GRAS) is accessed bya client in an object-server realization of GRAS. In section 2, we argued thatstructural information (nodes and edges) is separately stored from contentinformation (attributes). So when transferring a node from an object-server,we would either have to collect all its attributes and also transfer them tothe client, or transfer attribute information separately when needed. The�rst solution collects unnecessary data in case of navigational access, whilethe second increases communication without the bene�t of exploiting clus-tering for attribute accesses. Even worse, for pure navigational access, wewould, like in the query-server approach, not be able to utilize clustering toreduce communication costs at all, because each node had to be transferredseparately from server to client. 16

www.manaraa.com

Hybrid and adaptable approaches like mini-page locking proposed in [8] orde-escalating locking and communication granularity as in [5] might of coursebe bene�cial alternatives for GRAS, too. Nevertheless, we think they haveone severe drawback and that is increasing complexity of the server processand the communication protocols. Additionally, the simulation experimentsconducted for these approaches show the main bene�ts of the adaptableprotocols for workloads with quite some degree of data contention due toconcurrent writes. As argued in sub-section 2.1, we expect few conicts in aclient / server scenario for an integrated design environment.The �le-server approach simply uses a network �le system to maintainthe database �les and access pages within these �les. Its main drawbackfrom our point of view is the necessity to obtain pages and locks with twoseparate messages, one to the operating system for the �le access and one toa server process maintaining the locks.3.3 Page- and Query-Server CommunicationThe question to be answered next is, whether a page-server implementationreally reduces communication costs in comparison to a query-server. Thissurely depends on many factors, like caching and clustering strategies andcan therefore not be answered before a page-server is operational. To gain atleast a qualitative insight on this issue, [24] performed studies with GRAS2,the query-server version of GRAS, to estimate how often communicationwould take place in either client / server realization.To accomplish this, the access pro�les of four di�erent sessions with thePROGRES environment and one session with a generated prototype wereexamined. These sessions areMedical diagnosis A generated prototype de�ning a database to managediagnostical data of a hospital. Within the session, a database was builtusing the graph grammar transformations speci�ed with PROGRES.Expression Tree A small PROGRES speci�cation was parsed and inter-preted within the PROGRES environment.Binary Tree A small speci�cation was interactively created within the PRO-GRES environment and interpreted afterwards.Ferry Man A PROGRES speci�cation to solve the well known problemof a ferry man, who has to transport a wolf, a goat, and a cabbage17

www.manaraa.com

across a river without risking one item being eaten by another. Thisspeci�cation was handled within two sessions. In session 1, an erroneoustextual speci�cation was parsed and some of the errors corrected. Insession 2, the remaining errors were removed.The studied sessions range from fully automatic execution of graph grammarrules (Medical diagnosis, Expression Tree) to completely interactive editingsessions (Ferry Man, especially session 2). This should also give an impressionon the wide range of di�erent access pro�les to data the tools in a designenvironment have.The �rst quantity measured is the total number of calls to the GRASapplication programming interface (API calls) in each session. Each APIcall results in an RPC in the query-server implementation. We comparethese numbers to the number of pages read and written from and to stablestorage, which can be used as a lower bound for the number of transferredpages between client and server in a page-server system. The result is shownin �gure 6. We see, that the number of API calls is much higher than thenumber of disk accesses in all cases, with the two Ferry Man sessions markingboth extremes: whereas session 1 has 1600 times more API calls than diskaccesses, in session 2 this factor is only 33. If we leave these two extremesaside, we still end up with a factor between 100 and 1000 between the numberdisk accesses and the number of API calls in each session.When we use the number of disk accesses in a session as a lower boundfor the number of page transfers in a page-server system, we now should also�nd some upper bound for this quantity. We have used the average numberof di�erent pages accessed between two checkpoints for this. A checkpoint inGRAS is used to mark graph states which can later be reestablished usingGRAS' undo and redo mechanism. Typically, IPSEN tools set checkpointsfor every user interaction they perform. PROGRES and the generated pro-totypes also use checkpoints to implement non-deterministic backtrackingwhen executing graph grammar speci�cations. Here, we use two consecutivecheckpoints as boundaries for a top-level transactions.To see why the number of accessed pages between two checkpoints isan upper bound for the number of page transfers between server and clientin a page-server environment, one has to be aware that the GRAS2 server,being a query-server, keeps data pages in its page cache between checkpoints.It only ushes pages of log-�les back to stable storage to be able to applythe log in case of a crash. So the number of pages read from disk in each18

www.manaraa.com

300

600

900

1200

1500

1800

Medical
Diagnosis

Expression
Tree

FerryMan
Session 1

FerryMan
Session 2

Binary
TreeFigure 6: Ratios between number of API calls and disk accesses.transaction may well be lower than the number of pages accessed. By usingthe total number of accessed pages for each transaction we even disregard thepossibility of inter-transaction caching in a page-server system and assumethat each page used in a transaction has to be transferred to the clientprocess.The ratios between the average number of API calls and the averagenumber of accessed pages between two checkpoints are shown in �gure 7. Inall cases, the number of API calls is still more than an order of magnitudehigher than the number of accessed pages. This means that we would expecta page-server to have at least 10 times fewer messages than a query-server. Astable 1 shows, the time for transferring a page (2 k-Byte for GRAS2, 8 k-Bytefor GRAS3) is only two to four times higher than the time for transferringa few bytes as parameters to an API call. Therefore, we conclude that thecommunication costs for a page-server implementation of GRAS will be lowerthan the costs for a query-server. Taken the ratios from our experiments, thismight only be a factor of two in the worst case and up to a factor of 400(Ferry Man session 1) in the best case. Both factors are not realistic, becausewe avoid the worst case by allowing inter-transaction caching in the page-server. But for inter-transaction caching of pages, we need a cache coherencyprotocol between client and server thereby increasing the number of messages19

www.manaraa.com

Medical
Diagnosis

Expression
Tree

FerryMan
Session 1

FerryMan
Session 2

Binary
Tree

20

40

60

80

Figure 7: Ratios of average number of API calls to the average number ofaccessed pages between two checkpoints.sent, so that we cannot achieve the best case, either.4 The GRAS Page-ServerAs mentioned in section 2, the page-server variant of GRAS is implementedin a complete new version of the system called GRAS3. The client / servercut for this system is placed within the PageStorage sub-system (cf. section2.3). Analogous to �gure 4 we can see a simple page-server scenario in �gure8. It illustrates how the complexity of database accesses now lies withinthe client processes. The page-server by itself is rather simple. It is onlyconcerned with concurrency control and locking on page-level.Since most of the database functionality is executed by the client process,callbacks between the DBMS and the application code are simple procedurecalls in the page-server system. Compared with the query-server, where everycallback was an RPC between client and server, this eases attribute evalua-tion to a great extend. The drawback, however, is that now every applicationaccessing a graph needs to know how to evaluate an invalid attribute. Thisshould be no problem for most applications, since code accessing an attribute20

www.manaraa.com

ServerSideCommInterface

ClientSideCommInterface

PageCache

VirtualRecordStorage

GraphStorage

ChangeManagement

SchemeAndAttributeManagement

Application 1

SchemeAndAttributeManagement

Application 2

ChangeManagement

GraphStorage

VirtualRecordStorage

PageCache

ClientSideCommInterface

Machine
Action
Trigger
EventEvent

Trigger
Action

Machine

PageCache

PageFilesFigure 8: Simple scenario with one page-server and two clients.normally will also be aware of its evaluation function. This is di�erent forunspeci�c applications like graph browsers, which can only use schema infor-mation to access a database.One solution for this problem would be to store the code for attributeevaluation functions together with the schema de�ning the attribute. Thiscode could then be executed by all clients. Another solution is to requestattribute evaluation from a di�erent database client process. This could beissued by GRAS' event trigger machine or a similar mechanism like ToolTalk[16] which would even allow to start a client which is able to perform thetask. Note that even though delegating attribute evaluation to a di�erentclient involves inter-process communication, the problems of nested callbacksshould not occur here, since only the �rst request to evaluate an attribute issent to the evaluating process, whereas all remaining evaluations are handledby that process internally, as depicted in �gure 9. This is also the reason, whythe communication overhead induced by this solution would not be higherthan for the query-server system.This leads to the second utilization of callbacks we have mentioned forthe query-server: action execution by clients initiated by the event trig-ger machine. As can be seen in �gure 8, every client process also has anEventTriggerActionMachine as part of its architecture. This means, also thecallbacks for GRAS' trigger mechanism can be handled without inter-process21

www.manaraa.com

... ...

...
...

Get attribute ’pos’ from node n

Client 1 Client 2

Compute attribute ’pos’ for node n

Get attribute ’pos’ from node n’

Compute attribute ’pos’ for node n’

Get attribute ’pos’ from node n’’

Compute attribute ’pos’ for node n’’

Ordinary procedure call

Inter-process communication / implicit invocationFigure 9: Call stacks of two client processes. Client 1 requests an attributeevaluation form Client 2.communication, when only one client is involved. This should be the mostcommon case, e.g. when triggers are used for consistency maintenance. How-ever, IPSEN uses triggers also to synchronize clients (e.g. a graph browser isnoti�ed when it needs to update its display), and so we need a distributedevent-trigger machine for GRAS3. In this sense, the server of �gure 8 istoo simple. The page-server of GRAS3 also has capabilities to promote trig-gers and trigger activations between clients as a separate sub-system notshown there. The communication overhead for the distributed event-triggermachine is still not higher than in the query-server case, though.GRAS3 uses Modula-3's Network Objects [3] to realize inter-process com-munication. To deal with asynchronous callbacks, the system uses threads.This eases the implementation of e.g. the distributed event trigger machine.On the other hand, client processes now have to be aware of concurrentthreads, too.4.1 Cache Coherency protocolIn all data shipping client / server architectures, clients bu�er data whichis primarily maintained by the server. To achieve this, clients copy and22

www.manaraa.com

transfer data from the server into their caches. They can then work on thesecopies and may even modify them locally. For the GRAS page-server, [24]developed a C4-Protocol (concurrency control and cache coherency protocol)called CB-R/2Q. It is based on the CB-R protocol [12], but also integratesreplica state and lock mode as is suggested by [28] to achieve some dynamismfor propagation of updated pages.The protocol is completely speci�ed by a formal model enlightening thecomplex interactions between client cache management, nested transactionimplementation, and client / server communication and also served as a guide-line for the implementation. Table 2 shows in what lock modes / replica statesa page can be, either viewed from a client or from the server. In �gure 10, thestate-transition diagram for a page from the clients point of view is depicted.As can be seen, instead of removing a page from the client cache after acallback, the protocol allows to keep the page with a P-lock. This indicates,that access to this page is not allowed, because it is used by a di�erent client.Nevertheless, a page in lock-mode P can be dropped from the client-cache ifnecessary. Otherwise it will be updated when the client changing the pagecommits its transaction.X exclusive Write lock, assures exclusive access for oneclient.S shared Read lock, page is reserved for read access.This lock is only used by clients.C cached Server: the page is bu�ered at client side butalso available for read access to other clients.Client: the page is bu�ered but currently un-used. It can be read, if the lock is locallyupgraded into an S-lock.P pending The page is cached, but locked by anotherclient with an X-lock and therefore blocked(client only).O out-of-date Virtual lock. Pages marked with this \lock"are out dated or not locked at all.Table 2: Lock modes for pages.The protocol implementation tries to reduce the communication over-head induced by the cache coherency protocol as far as possible. It does so23

www.manaraa.com

Callback

Own Commit

Drop

S

C P

O

X

Write Request

Read Request

Own Commit/
Own Abort

Write Request

Own Abort

Read
Upgrade

Write
Upgrade

Other Commit
Other Abort/

Drop

Figure 10: State transition diagram for lock modes of one page at the client.by collecting update messages at transaction commit for several pages andpiggybacking protocol messages on data messages whenever possible.4.2 Performance of the Page-ServerTo directly compare the performance of the two client / server architecturesfor GRAS (GRAS2 and GRAS3), we implemented the the OO1 benchmark[6] for both systems. The results indicate that the performance of the page-server system is better than that of the query-server system, given server andclient are separate processes. A client linked together with the query-server,though, outperforms the page-server by a factor of 3 for read- and 10 forwrite-accesses. One reason of course is that no inter-process communicationtakes place with this \client / server" variant. Nevertheless, the new GRASimplementation still has much potential for optimizations on the client side,too.
24

www.manaraa.com

5 SummaryWe have presented our work on client / server distribution aspects in struc-ture-oriented DBMS. We studied two di�erent distribution alternatives usingthe graph DBMS GRAS as an example system. To clarify the context inwhich the system is used, we �rst gave a brief introduction to IPSEN andGRAS. Following that, we discussed two levels of client / server distributionfor GRAS in detail, namely query- and page-server, outlining performanceand protocol aspects. Both alternatives are implemented in two di�erentversions of GRAS, which both are used for the tools developed at our de-partment.We investigated the communication costs of the two client / server ap-proaches by measuring the access pro�le of existing applications for thequery-server and estimating the number of page transfers in a correspondingpage-server system. This analysis revealed a clear performance advantage forthe page-server system.The use of a page-server as underlying distribution mechanism made itnecessary to redesign some of GRAS sub-systems to achieve the same func-tionality as with the query-server. One example for this is the event-triggermachine. The overall architecture, though, stayed the same. We also brieyreviewed a cache coherency protocol for the page-server which adds a dy-namic propagation strategy to the CB-R protocol.References[1] M. P. Atkinson, F. Bancilhon, D. J. DeWitt, K. R. Dittrich, D. Maier,and S. B. Zdonik. The Object-Oriented Database System Manifesto. InH. Garcia-Molina and H. V. Jagadish, editors, Proceedings of the 1990ACM SIGMOD International Conference on Management of Data, page395, Atlantic City, NJ, 23{25 May 1990. SIGMOD Record 19(2), June1990.[2] P. Bernstein. Database System Support for Software Engineering. InProc. of the 9th Int. Conf. on Software Engineering, pages 166{178.IEEE Computer Society Press, 1987.
25

www.manaraa.com

[3] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Net-work Objects. SRC Research Report 115, Digital Systems ResearchCenter, Palo Alto, February 1994.[4] Thomas Brandes. Gras | design and implementation of a graph storage.Master's thesis, University of Dortmund, 1984.[5] M. J. Carey, M. J. Franklin, and M. Zaharioudakis. Fine-grained sharingin a page server OODBMS. SIGMOD Record (ACM Special InterestGroup on Management of Data), 23(2):359{370, June 1994.[6] R. G. G. Cattell and J. Skeen. Object Operations Benchmark. ACMTransactions on Database Systems, 17(1):1{31, March 1992.[7] Honf-Tai Chou, David J. DeWitt, Randy H. Katz, and Anthony C. Klug.Design and implementation of the wisconsin storage system. Software-Practice & Experience, 15(10):943{962, oct 1985.[8] Sheauyin Chu. Database support for electronic CAD applications: Per-formance and architecture. Technical Report UIUCDCS-R-94-1849,University of Illinois at Urbana-Champaign, December 1994.[9] D. DeWitt, P. Futtersack, D. Maier, and F. Velez. A Study ofthree Alternative Workstation-Server Architectures for Object-OrientedDatabase Systems. In Proceedings of the Sixteenth Very Large DataBases Conference, pages 107{121, Brisbane, Australia, 1990.[10] W. Emmerich, W. Sch�afer, and J. Welsh. Databases for Software En-gineering Environments { The Goal Has not yet Been Attained. In IanSommerville and Manfred Paul, editors, Proceedings of the 4th Euro-pean Software Engineering Conference, pages 145{162. Lecture Notes inComputer Science Nr. 717, Springer-Verlag, September 1993.[11] Wolfgang Emmerich. Tool Construction for Process-Centered SoftwareDevelopment Environments based on Object Databases. PhD thesis,Dept. of Mathematics and Computer Science, University of Paderborn,Germany., 1995.[12] Michael J. Franklin and Michael J. Carey. Client-server caching revis-ited. In Proc. Int. Workshop on Distributed Object Management, pages252{274, Edmonton (Canada), August 1992.26

www.manaraa.com

[13] Felix Gatzemeier. Frameworks of Interactive Document Editing En-vironments with Often Changing Schemata. Master's thesis, RWTHAachen, 1998. in german, to appear.[14] Object Management Group. The common object request broker: Ar-chitecure and speci�cation. Technical report, Object ManagementGroup, 1991.[15] Dennis Heimbinger. Experiences with an object manager for a process-centered environment. In Proceedings of the 18th Conference on VeryLarge Databases, Morgan Kaufman pubs. (Los Altos CA), Vancouver,August 1992.[16] Astrid M. Julienne and Brian Holtz. ToolTalk & Open Protocols - Inter-Application Communication. Prentice Hall, 1994.[17] R. Kadia. Issues encountered in building a exible software developmentenvironment : Lessons from the arcadia project. In Proceedings of ACMSIGSOFT Fifth Symposium on Software Development Environments,pages 169{180, Dec 1992.[18] Norbert Kiesel, Andreas Sch�urr, and Bernhard Westfechtel. Gras, agraph-oriented (software) engeneering database system. InformationSystems, 20(1):21{51, 1995.[19] Peter Klein. Designing software with modula-3. Technical Report 94-16,RWTH Aachen, 1994.[20] A. M. Kotz, K. R. Dittrich, and J. A. M�ulle. Supporting SemanticRules by a Generalized Event/Trigger Mechanism. In M. Missiko� J.W.Schmidt, S. Ceri, editor, Proceedings of the International Conference onExtending Database Technology (EDBT '88), volume 303 of LNCS, pages76{91, Venice, Italy, March 1988. Springer.[21] Katharina Mehner. Describing the Behavior of Software Systems. Mas-ter's thesis, RWTH Aachen, 1997.[22] Oliver Meyer. Tools for a Reader-/Writer Environment with OftenChanging Schemata. Master's thesis, RWTH Aachen, 1998. in german,to appear. 27

www.manaraa.com

[23] M. Nagl, editor. Building Tighthly Integrated Software DevelopmentEnvironments { The IPSEN Approach. LNCS 1170. Springer-Verlag,1996.[24] Reiner Nix. Distributing a database management system: A worksta-tion / server-architecture for the post-relational dbms gras. Master'sthesis, RWTH Aachen, Department of Computer Science III, 1996.[25] Wolfgang Reimesch. Design and implementation of a communicationlayer for database systems. Master's thesis, RWTH Aachen, Departmentof Computer Science III, 1995.[26] Andreas Sch�urr. Operational Speci�cations with Programmed Graph-Rewriting-Systems. Dissertation, RWTH Aachen, Department of Com-puter Science III, 1991.[27] Sun Microsystems, Inc. Network Programming Guide, 1990.[28] Kevin Wilkinson and Marie-Anne Neimat. Maintaining consistency ofclient-cached data. In Proceedings of the 16th VLDB Conference, Bris-bane, '90.[29] Stefan Zohren. The gras-server { a client-server-realization of gras. Mas-ter's thesis, RWTH Aachen, Department of Computer Science III, 1992.in german.[30] Albert Z�undorf. PROgrammed GRaph-rEwriting-Systems: Implementa-tion and Use. Dissertation, RWTH Aachen, Department of ComputerScience III, 1995.

28

